Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vet World ; 17(3): 612-619, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38680142

ABSTRACT

Background and Aim: The pathogenesis of staphylococcal infections is mediated by virulence factors, such as enzymes, toxins, and biofilms, which increase the resistance of microorganisms to host immune system evasion. Testing and searching for standardized multi-level algorithms for the indication and differentiation of biofilms at the early stages of diagnosis will contribute to the development of preventive measures to control the critical points of technology and manage dangerous risk factors for the spread of infectious diseases. This research aimed to study the main stages of Staphylococcus aureus biofilm formation in in vitro experiments and to analyze the dynamics of respiratory syndrome development in chickens infected with these bacteria. Materials and Methods: Experimental reproduction of the infectious process was performed using laboratory models: 10-day-old White Leghorn chickens (n = 20). Before the experiments, the birds were divided into two groups according to the principle of analogs: Group I (control, n = 10): the birds were intranasally inoculated with 0.5 cm3 of 0.9% NaCl solution; Group II (experiment, n = 10): the birds were intranasally inoculated with a suspension of S. aureus bacteria, 0.5 cm3, concentration 1 billion/cm3. Results: Colonization of individual areas of the substrate under study in vitro occurred gradually from the sedimentation and adhesion of single motile planktonic cells to the attachment stage of microcolony development. Staining preparations with gentian violet due to the "metachromosia" property of this dye are a quick and fairly simple way to differentiate cells and the intercellular matrix of biofilms. Fixation with vapors of glutaraldehyde and osmium tetroxide preserves the natural architecture of biofilms under optical and scanning electron microscopy. Pure cultures of S. aureus microorganisms were isolated from the blood, lungs, small intestine, liver, kidneys, and spleen after 5-10 days during experimental infection of chickens. Clinical signs of respiratory syndrome developed within 5-6 days after infection. Acute and subacute serous-fibrinous airsacculitis, characterized by edema and thickening of the membranes of the air sacs and the presence of turbid, watery, foamy contents in the cavity, was the most characteristic pathomorphological sign. The signs of acute congestive hyperemia and one-sided serous-fibrinous pneumonia developed with significant thickening of fibrinous deposits. In Garder's gland, there was an increase in the number of secretory sections, indicating hypersecretion of the glands. In the lymphoid follicles of Meckel's diverticulum, leukocytes, usually lymphocytes, and pseudoeosinophils were detected. Conclusions: Hydration and heteromorphism of the internal environment of biofilms determine the localization of differentiated cells in a three-dimensional matrix for protection against adverse factors. The most characteristic pathomorphological sign was the development of acute and subacute serous-fibrinous airsacculitis when reproducing the infectious process in susceptible models. There was a significant thickening of fibrinous deposits and signs of acute congestive hyperemia and one or two serous-fibrinous pneumonia developed.

2.
Pathogens ; 13(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38535596

ABSTRACT

Urinary tract infections occupy a special niche among diseases of infectious etiology. Many microorganisms associated with urinary tract infections, such as Klebsiella oxytoca, Enterococcus spp., Morganella morganii, Moraxella catarrhalis, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus aureus, Staphylococcus spp., and Candida spp., can form biofilms. The aim of this research was to study the effect of the enzyme L-lysine-Alpha-oxidase (LO) produced by the fungus Trichoderma harzianum Rifai on the biofilm formation process of microorganisms associated with urinary tract infections. Homogeneous LO showed a more pronounced effect than the culture liquid concentrate (cCL). When adding samples at the beginning of incubation, the maximum inhibition was observed in relation to Enterococcus faecalis 5960-cCL 86%, LO 95%; Enterococcus avium 1669-cCL 85%, LO 94%; Enterococcus cloacae 6392-cCL 83%, LO-98%; and Pseudomonas aeruginosa 3057-cCL 70%, LO-82%. The minimum inhibition was found in Candida spp. Scanning electron microscopy was carried out, and numerous morphological and structural changes were observed in the cells after culturing the bacterial cultures in a medium supplemented with homogeneous LO. For example, abnormal division was detected, manifesting as the appearance of joints in places where the bacteria diverge. Based on the results of this work, we can draw conclusions about the possibility of inhibiting microbial biofilm formation with the use of LO; especially significant inhibition was achieved when the enzyme was added at the beginning of incubation. Thus, LO can be a promising drug candidate for the treatment or prevention of infections associated with biofilm formation.

3.
Vet World ; 16(5): 1052-1060, 2023 May.
Article in English | MEDLINE | ID: mdl-37576771

ABSTRACT

Background and Aim: With the development of industrial maintenance technology, a group of pathogens called avian pathogenic Escherichia coli (APEC) became very common. The initiation, development, and outcome of the infectious process mediated by virulent APEC strains occur through a decrease in the colonization resistance of the intestine, an immunobiological marker of homeostasis stability in susceptible species. This study focused on the pathogenetic features of colibacillosis and the morphological features of E. coli. Materials and Methods: Clinical, immunological, bacteriological, and histological studies were conducted on 15-day-old white Leghorn birds (n = 20). The birds were divided into two groups: Control group (Group I; n = 10) with birds intranasally inoculated with 0.5 mL of 0.9% NaCl solution and experimental group (Group II; n = 10) with birds intranasally inoculated with 0.5 mL of an E. coli suspension at 1 billion/mL. Results: During the biofilm formation, clusters of microcolonies were formed as a gel-like intercellular matrix that accumulated due to cell coagulation. The intercellular matrix "glues" heteromorphic cells together and forms a structure of densely packed heteromorphic cells arranged in an orderly manner and growing in different directions. During the experimental reproduction of E. coli, excessive growth was observed in material isolated from poultry. Pathogenic E. coli strains implementing virulence factors adhered to the receptors of erythrocytes, alveolocytes, and enterocytes. Multicellular heterogeneous biofilms, united by an intercellular matrix, were located at the apical poles of the respiratory tract alveolocytes and enterocytes of the terminal ileum villi. Many bacteria exudate containing desquamated epithelial cells with an admixture of mucus, and polymorphonuclear leukocytes were detected in the lumen of the birds' abdominal organs. Invasive bacteria damaged the epithelial layer, violated the endothelial layer of blood vessels, and developed inflammatory hyperemia of the lamina propria of the respiratory and digestive systems' mucous membrane. A correlative dependence of changes developed by the type of delayed hypersensitivity reaction was established. Signs of accidental transformation of the thymus, atrophy of the bursa of Fabricius, disseminated thrombosis, and septic spleen developed. Moreover, toxic cardiomyocyte dystrophy, signs of congestive vascular hyperemia, massive disintegration of lymphocytes, macrophage reactions, perivascular edema resulting from the release of plasma, and shaped blood elements were detected. Conclusion: The development and outcome of the infectious process in escherichiosis primarily depend on the homeostasis stability of susceptible species and virulence factors of the pathogenic microorganisms. One of the selected strains, E. coli O78:K80 displayed the highest ability to form biofilms. Its strong adhesion ability to bird erythrocytes was demonstrated. Deepening the scientific knowledge of the interaction between eukaryotes and prokaryotes will contribute to a better understanding of the pathogenetic aspects of avian escherichiosis and eventually find promising anti-adhesive drugs that could reduce primary bacterial contamination in vivo and in vitro.

4.
Animals (Basel) ; 13(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37048514

ABSTRACT

Chronic otitis externa of dogs is a significant problem due to the prevalence and complexity of the treatment of such animals. There is evidence that in 60-80% of cases of infectious diseases microorganisms located in the biofilm phenotype play the main role. Microorganisms in the biofilm phenotype have a number of advantages, the most significant of which is considered to be increased resistance to various external factors. Among them, a special place is occupied by resistance to antibiotics. In recent decades, research has been conducted at an increasing scale on the role of biofilm infections in various pathologies in veterinary medicine. The etiology and therapy of dog otitis externa caused by Malassezia pachydermatis biofilm has not been fully studied. This is why we consider relevant the scientific and practical aspects of research on the etiology and therapy of dog otitis externa from the position of biofilm infection. In this work, it has been statistically proven that there is a relationship between the optical density of Malassezia pachydermatis biofilms and their sensitivity to drugs, and this relationship is statistically significant. In addition, we have demonstrated that Farnesol has a good antibiofilm effect at a concentration of more 1.6 µM/mL (24% OD decrease of biofilm), and its highest antibiofilm effect (71-55%-more than a half) was observed at a concentration of 200-12.5 µM/mL.

5.
Dent J (Basel) ; 11(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36661550

ABSTRACT

The purpose of this study is to calculate microbiological composition of aligners after a day of wearing them. To date, the dental market for orthodontists offers many ways to correct bites. Aligners are transparent and almost invisible from the teeth. They are used for everyday wear to correct the incorrect position of the teeth, which was once considered the prerogative of braces. Scientists worldwide have repeatedly considered questions regarding the interaction between aligners and the oral cavity's microflora; however, the emphasis has mainly shifted toward species composition and antibiotic resistance. The various properties of these microorganisms, including biofilm formation, adhesion to various cells, and the ability to phagocytize, have not been studied so widely. In addition, these characteristics, as well as the microorganisms themselves, have properties that change over time, location, and in certain conditions. In this regard, the problem of biofilm formation in dental practice is always relevant. It requires constant monitoring since high contamination of orthodontic materials can reduce the effectiveness of local anti-inflammatory therapy and cause relapses in caries and inflammatory diseases of the oral cavity. Adhesive properties, one of the key factors in forming the architectonics of biofilms, provide the virulence factors of microorganisms and are characterized by an increase in optical density, determining the duration and retrospectivity of diagnostic studies. This paper focuses on the isolation of clinical microbial isolates during aligner therapy and their ability to form biofilms. In the future, we plan to use the obtained strains of microorganisms to create an effective and safe biofilm-destroying agent. We aimed to study morphometric and densitometric indicators of biofilms of microorganisms persisting on aligners.

SELECTION OF CITATIONS
SEARCH DETAIL
...